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We propose a low-noise, triply resonant, electro-optic (EO) scheme for quantum microwave-to-optical
conversion based on coupled nanophotonics resonators integrated with a superconducting qubit. Our optical
system features a split resonance—a doublet—with a tunable frequency splitting that matches the microwave
resonance frequency of the superconducting qubit. This is in contrast to conventional approaches, where large
optical resonators with free-spectral range comparable to the qubit microwave frequency are used. In our system,
EO mixing between the optical pump coupled into the low-frequency doublet mode and a resonance microwave
photon results in an up-converted optical photon on resonance with high-frequency doublet mode. Importantly,
the down-conversion process, which is the source of noise, is suppressed in our scheme as the coupled-resonator
system does not support modes at that frequency. Our device has at least an order of magnitude smaller footprint
than conventional devices, resulting in large overlap between optical and microwave fields and a large photon
conversion rate (g/2π ) in the range of ∼5–15 kHz. Owing to a large g factor and doubly resonant nature of our
device, microwave-to-optical frequency conversion can be achieved with optical pump powers in the range of tens
of microwatts, even with moderate values for optical Q (∼106) and microwave Q (∼104). The performance metrics
of our device, with substantial improvement over the previous EO-based approaches, promise a scalable quantum
microwave-to-optical conversion and networking of superconducting processors via optical fiber communication.
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I. INTRODUCTION

Quantum frequency conversion between superconducting
(SC) microwave qubits and telecom optical photons is critical
for long distance communication of networked SC quantum
processors. While SC qubits operate at cryogenic temperatures
to sustain their quantum coherence, converting them to the
optical domain enables transferring the quantum states to room
temperature and over long distances. For such a conversion
process, several schemes have been investigated, including
optomechanics [1–3], magnons [4], piezomechanics [5,6], and
Pockels electro-optics (EO) [7–10].

The EO conversion approach is particularly attractive since
it is broadband, low noise, mechanically and thermally stable
(i.e., does not rely on freestanding structures), scalable (large-
scale integration of EO devices with superconducting circuits
is possible), and tunable (e.g., using bias voltages). The EO
effect, a second-order optical nonlinearity of the material,
mixes the microwave signal and the pump laser fields, thereby
producing an optical frequency sideband next to the pump
laser frequency [8–10]. Owing to its large EO coefficient,
LiNbO3 (LN) is ideally suited for this task. The efficiency of
the conversion process can be dramatically enhanced using an
optical resonator that supports resonances at pump and side-
band frequencies [8–11]. Whispering gallery mode (WGM)
resonators fabricated by polishing LN crystal [9,10,12,13]
are among the most promising candidates for this conversion
process. Still, these devices face three key limitations [see also
Fig. 1(a)]:

*mo.soltani@raytheon.com
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(1) They require that the free-spectral range (FSR) of the
optical resonator matches the microwave frequency to enable
resonance-enhanced three-wave mixing with pump photons.
This makes the optical resonator quite large, resulting in
a very small electro-optic conversion rate factor (g/2π <

100 Hz). This can be improved using an integrated LN
resonator featuring g values in the range of tens of kilohertz,
as theoretically demonstrated by [14].

(2) They can be noisy since the mixing of the pump laser
with the microwave signal produces not only the desired up-
converted sideband but also the undesired down-converted one.
To mitigate this, previous approaches [10] have utilized off-
resonance pumping [see the bottom panel of Fig. 1(a)], albeit
at the expense of reduced conversion efficiency.

(3) They require perfect matching between microwave
resonance and the spacing between the optical resonances, as
there is no frequency tunability to arbitrarily space the optical
resonances.

In this paper, we propose an approach that overcomes the
above-mentioned hurdles. Our device is based on an integrated
coupled-resonator system that supports a resonance doublet
with a frequency splitting that matches the resonant frequency
of the microwave photon and reduces both microwave and
optical mode volumes by at least an order of magnitude.
We show that when implemented in an LN nanophotonic
platform, our device can feature g/2π in the ∼10-kHz
range. We emphasize that our device does not require opti-
cal FSR-to-SC microwave qubit frequency matching, which
typically results in large devices and low g, and conse-
quently requires off-resonance pumping to suppress unwanted
down-conversion processes [Fig. 1(a)]. In contrast, our ap-
proach [Fig. 1(b)] is based on a fully resonant process where
the pump and up-converted photons are resonant with lower
and higher frequency of the doublet, respectively. Importantly,
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FIG. 1. Electro-optic–based microwave-to-optical quantum con-
version. (a) The conventional scheme wherein an electro-optic ring
resonator with FSR close to but slightly different than the microwave
resonance (ωM ) of a SC qubit is integrated with the microwave cavity
electrode for the electro-optic conversion. The pump laser slightly
blue detuned from one of the resonances results in up-conversion
on resonance with the cavity mode, while down-conversion is
off-resonance, and thereby suppressed. (b) Our proposed scheme,
based on strongly coupled resonators, features frequency doublets
corresponding to symmetric and antisymmetric supermodes, with
splitting equal to the microwave resonance. The coupling between the
resonators (μ) can be made tunable. In this scheme the up-conversion
is strongly enhanced, since both pump and the up-converted photon
are resonant with the doublet. The down-conversion is strongly
suppressed, since it is far detuned from the resonance of the system.

the down-converted photon is far detuned from any resonance
of the system, and therefore this process is strongly suppressed
[Fig. 1(b)]. Finally, we show that optical resonance doublet
frequency splitting can be controlled and tuned by applying
a bias voltage, which allows for perfect matching with the
microwave resonance frequency.

The paper is organized as follows: Section II discusses the
coupled-resonator EO device. Section III shows the numerical
simulations of the g factor for this device using LN inte-
grated photonic resonators. Section IV discusses the quantum-
mechanical analysis of microwave-to-optical conversion with
this proposed device and finds the optimal condition for the
maximum conversion process as well as the relations between
the optical and the microwave resonator parameters to the
optical pump power. Section V has a discussion on other
considerations relevant to this platform, and we conclude in
Sec. VI.

II. THE PROPOSED MICROWAVE-TO-OPTICAL
CONVERSION DEVICE

Figure 1(b) shows the general structure of our proposed de-
vice, which consists of two identical optical ring EO resonators
coupled to each other by a coupling factor μ. In this coupled
system, μ can be made tunable, as discussed later. This coupled
resonator supports symmetric and antisymmetric supermodes
with resonance frequencies of ω = ω0 ± μ, where ω0 is
the resonance frequency of the individual resonators when
uncoupled. These eigenfrequencies can be found starting from

the coupled-mode equations, and assuming mode amplitudes
of a1 and a2 for each resonator:

da1

dt
= −iω0a1 + iμa2, (1)

da2

dt
= −iω0a2 + iμa1. (2)

From the sum and the difference of the above two equations
we find the following equations for the normal modes of the
coupled resonators:

d(a1 ± a2)

dt
= −i(ω0 ∓ μ)(a1 ± a2), (3)

where a1 + a2 and a1 − a2 are the symmetric (as) and anti-
symmetric (aas) mode of the coupled resonator with resonance
frequencies ωs = ω0 − μ and ωas = ω0 + μ, respectively.

The three-wave electro-optic mixing process occurs be-
tween the supermodes of the coupled-resonator system and
the microwave photon mode corresponding to the SC qubit.
As illustrated in Fig. 1(b), the pump laser is on resonance with
the symmetric supermode, as it has the lower frequency, while
the up-converted photon is resonant with the antisymmetric
supermode. The frequency splitting between the supermodes
is matched to the frequency of the microwave photon
(2μ = ωM ). Therefore, the FSR of each resonator can be much
larger than the frequency splitting (FSR � 2μ), and hence,
smaller resonators with reduced mode volume can be used,
resulting in larger g. This is in contrast with conventional
approaches shown in Fig. 1(a) that require a large resonator
with FSR approximately equal to the microwave photon
frequency (FSR ≈ ωM ).

The conversion rate factor (g) between the microwave
photon and the up-converted optical photon can be obtained
using coupled-mode theory by including the EO effect as a
perturbative term into Maxwell equations. This results in the
following rate equation:

daas

dt
= −igasaM, (4)

where aM is the mode amplitude of the microwave cavity, and
g can be expressed as

g = ε0ω0

4Uopt

√
h̄ωM

UM

∫
Ē∗

as[�ηĒ∗
M ]Esdv. (5)

In the above expression, the integral is calculated over the
volume of the LN resonator, Ēs and Ēas are the electric fields
of the symmetric and antisymmetric modes of the coupled
resonator, ĒM is the field of the microwave cavity, and �η

is the electro-optic tensor of the optical resonator material.
UM = CV 2/2 is the microwave resonator energy, where C

and V are the capacitance and the voltage of the microwave
electrode, and Uopt is the optical energy of the symmetric
and antisymmetric modes that have closely similar values.
Equation (5) shows that nonzero g can be achieved only if the
microwave field is not symmetric. This can be accomplished
by having the microwave field interact with only one optical
resonator [e.g., the upper one, as shown in Fig. 1(b)] or with
both resonators using a push-pull configuration. In the latter,
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FIG. 2. (a) Schematic of a coupled resonator with a tunable
coupling strength that can be used to dynamically control the
resonance splitting. The resonators are coupled at two points using
directional couplers with 100% coupling (with the coupling matrix
as shown in the figure), and each has an integrated phase-shifter that
imparts the phase with the opposite sign. (b) The resonance splitting
can expand or contract by controlling the phase φ.

different voltage polarity is used for each resonator to provide
a nonzero electro-optic mixing.

In order to achieve a triple-resonance condition between
optical and microwave fields, it is essential to allow for
dynamical tunability of the coupling factor μ. Such a tuning
knob would allow for any fabrication-induced changes to the
resonant frequencies to be compensated for. To achieve this, we
propose the configuration shown in Fig. 2(a): the resonators are
coupled at two points with 100% coupling, and each resonator
has a built-in phase shifter for the tuning purpose. Using a
transfer matrix analysis, the symmetric and antisymmetric
eigenresonances of this coupled resonator can be found as

ωs,as = ω0 + ngFSR

neff
(π ∓ φ), (6)

where neff, ng , and FSR = c/(nglR) are the effective index,
group index, and the free-spectral range of the individual
resonators, respectively, and c and lR are the speed of light
and the resonator length, respectively. The phase tuning can be
achieved using the same EO effect by applying dc voltage to the
electrodes of the phase shifter, without any power dissipation.
Our recent work shows that a nanophotonic LN modulator sim-
ilar to the ones considered here, has VπL ≈ 2 V cm. That is, 2 V
applied across an electrode length of L = 1 cm is sufficient to
provide a π phase shift [15]. Using this number, we evaluate the
resonance splitting achievable with dc bias applied to the phase
shifter, assuming the FSR = 100 GHz for each resonator
(Fig. 3). As seen from this figure, a large resonance splitting
tuning range is achievable with a reasonable bias voltage.

III. NUMERICAL ANALYSIS OF g FACTOR

We consider a Z-cut LN as the photonic resonator material,
and two possible configurations for placing the microwave
electrodes with respect to the optical resonator as illustrated in
Figs. 4(a) and 4(b). The microwave electrodes are interacting
with only one of the optical resonators in the coupled-resonator
schemes discussed here. In both cases, optical modes are in
telecom wavelength range (∼1550 nm). The parallel electrode
configuration shown in Fig. 4(a) results in larger g, due
to stronger vertical electric field, but is somewhat more
challenging to fabricate. The SC qubit is made on the silicon
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FIG. 3. Calculated resonance splitting vs electrostatic voltage
applied to the phase shifter for the LN coupled resonator with the
structure shown in Fig. 2(a) and for three phase-shifter lengths of 100,
200, and 300 microns, as specified in the figure. For this calculation
we assume a phase shift of π is obtained with a 2 V cm, and use
Eq. (6). We also assume the resonator has an FSR of 100 GHz,
ng = 2.39, neff = 2.

layer at some distance from the SiO2 layer to avoid the
microwave loss of SiO2 [16]. Figures 4(c) and 4(d) show
the microwave field distributions for the structures in Figs. 4(a)
and 4(b), respectively. It can be seen that the electric field lines
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FIG. 4. The cross section of an LN optical resonator buried in
SiO2 and integrated with microwave electrodes. In (a) electrodes
are on top and the bottom of the LN resonator, while in (b) one
of the electrodes is on top of the LN resonator and two ground
electrodes are on the sides. In both (a) and (b) the SC qubit (details
not shown) is implemented on the Si substrate at some distance from
the resonator. The SC qubit is capacitively connected (not shown) to
the top electrode on the LN resonator via a long meander microstrip
which is also an inductor. This inductor and the capacitive electrode
on top of the LN resonator forms the microwave cavity. (c, d) The
normalized electric potential and electric field lines in the devices in
(a) and (b), respectively, assuming the microwave frequency of ωM =
2π×6 GHz. (e) The cross section of the normalized transverse electric
optical mode profile of the LN resonator at a wavelength of 1550 nm.
The simulation parameters in (c)–(e) are W = 1.2 μm, H =
0.75 μm, S1 = S2 = 2 μm, G = 3 μm, and L = 1.5 μm. The color
bar corresponds to the figures in (c)–(e).
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(a) (b)

FIG. 5. Calculated g factor for the Z-cut LN coupled resonator
for different FSRs and for α = 1. (a) The resonator has a cross
section shown in Fig. 4(a) with parameters of W = 1.2 μm, S1 =
S2 = 2 μm, G = 3 μm, and different H values as specified in the
figure. (b) The resonator has a cross section shown in Fig. 4(b) with
the parameters of W = 1.2 μm, S1 = S2 = 2 μm, L = 1.5 μm, and
different H values as specified in the figure. In both figures in (a) and
(b) the resonator FSR values (i.e., resonator perimeters) that provide
a microwave electrode capacitance �40 f F have been specified.

inside the LN resonator are vertical, which maximizes the
EO effect for the Z-cut LN, and are nearly uniform across
the optical mode profile [Fig. 4(e)]. This uniformity of the
microwave field can be used to simplify Eq. (5) to

g ≈ n2
er33ω0

√
h̄ωM

UM

α

2
Ē∗

Mz, (7)

where ne and r33 are the extraordinary refractive optical index
(2.138) and the electro-optic coefficient (30 pm/V) of LN,
respectively, ĒMz is the z component of the microwave electric
field at the center of the LN resonator, and α is the ratio of
the electrode length to the perimeter of an individual resonator.
The factor of 1/2 takes into account the fact that the microwave
field interacts with only one of the optical resonators.

In this work we assume a microwave resonance of ωM =
2π × 6 GHz, which is typical for SC qubits. This frequency
imposes constraints on the resonance splitting required for
the coupled optical resonators, as well as on the lengths of
the electrodes and the transmission lines that respectively
define the capacitance (C) and the inductance (L) of the
microwave resonator (ωM = 1/

√
LC). With the present tech-

nology, a roughly minimum electrode capacitance of ∼40 fF is
satisfactory to keep it large enough compared to the parasitic
capacitance, which is normally <10 fF, and to make a decent
meander length inductance on chip.

Figures 5(a) and 5(b) show the calculated g factor for
the coupled resonator, without tunable coupling and with
the microwave electrode configurations depicted in Figs. 4(a)
and 4(b), respectively, for different resonator FSRs (i.e.,
resonator lengths). For these calculations we assume the
microwave electrode is on one of the optical resonators and
covers its entire perimeter, i.e., α = 1 in Eq. (7). We find
g/2π ≈ 10 kHz, which is quite promising given the compact
resonator sizes. As expected, the g values in Fig. 5(a) are larger
than those in Fig. 5(b) owing to a stronger microwave electric
field in the parallel electrode geometry shown in Fig. 4(a).

Figures 6(a) and 6(b) show the calculated g for the
coupled-resonator scheme shown in Fig. 2(a) that features
a phase-shifter section in each ring resonator, and for the

(a) (b)

FIG. 6. Calculated g factor for the Z-cut LN coupled resonator
with tunable coupling as shown in Fig. 2(a) versus the FSR and for
phase-shifter lengths of 200 μm, and α = 0.55. (a) The resonator
has a cross section shown in Fig. 4(a) with the parameters of
W = 1.2 μm, S1 = S2 = 2 μm, G = 3 μm, and different H values
as specified in the figure. (b) The resonator has a cross section
shown in Fig. 4(b) with the parameters of W = 1.2 μm, S1 = S2 =
2 μm, L = 1.5 μm, and different H values as specified in the figure.
In both figures in (a) and (b) the resonator FSR values (i.e., resonator
perimeters) that provide a microwave electrode capacitance >40 f F

have been specified.

microwave electrode configurations depicted in Figs. 4(a)
and 4(b), respectively. The g values in Fig. 6 are relatively
smaller than the ones in Fig. 5, since the SC microwave
electrode is absent in the coupling region, thus reducing
the overall interaction length between the microwave and
the optical modes, resulting in α = 0.55. Furthermore, since
UM = 1/2CV 2, then g ≈ √

1/C ≈ √
1/l [see Eq. (7)], where

l is the electrode length. Therefore, due to
√

1/l dependence,
the g values in Fig. 6 are not significantly different from
those in Fig. 5. Further optimization of the coupled-resonator
geometry and the phase shifter can provide simultaneously
large g and a wide tuning range.

IV. QUANTUM-MECHANICAL ANALYSIS AND OPTIMAL
CONDITIONS OF THE CONVERSION PROCESS

In this section we analyze the microwave-to-optical con-
version process at a single photon level and find the optimal
conditions with respect to the optical and the microwave
resonator parameters, as well as the optical pump power.
For simplicity, we consider the geometry without the phase
shifters, as illustrated in Fig. 7. The energy Hamiltonian
(Ĥ ) of the device includes the interaction of two doublet
optical modes and the microwave mode in the presence of the
optical and the microwave waveguides. For the analysis we
consider two scenarios: (1) a closed quantum system where
the waveguides are absent and the resonators do not have any
loss, and (2) an open quantum system where the resonators are
coupled to the waveguides as well as a continuum reservoir
of loss.

A. A closed-quantum-system analysis

In the absence of the waveguides and any external loss,
Ĥ can be written as the sum of the noninteracting (Ĥ0) and
interacting (V̂ ) terms as

Ĥ = Ĥ0 + V̂ , (8)
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FIG. 7. Schematic of the coupled resonator microwave-to-optical
conversion with input and output parameters specified. The optical
pump at a frequency of ωs and the vacuum mode at frequency ωas

are coupled in from a waveguide to the symmetric and antisymmetric
modes of the coupled resonator, respectively.

where

Ĥ0 = h̄ωsâ
†
s âs + h̄ωasâ

†
asâas + h̄ωMâ

†
MâM (9)

and

V̂ = h̄g(â†
asâM âs + adjoint). (10)

In the above expressions ωs and ωas are the optical doublet
resonance corresponding to the symmetric and antisymmetric
mode of the coupled resonator, respectively, and ωM is the
resonance of the microwave cavity. âs , âas, and âM (and their
adjoints) are the annihilation (creation) operators for these
resonance modes, and g is the coupling factor that mixes
the microwave mode to the optical mode, as discussed in
earlier sections. By inserting the above expressions into the
Heisenberg picture equation of motion,

dâx

dt
= i

h̄
[Ĥ ,âx] , (x = s,as,M), (11)

we obtain the following dynamical equations:

dâs

dt
= −iωsâs − igâ

†
Mâas, (12)

dâas

dt
= −iωasâas − igâMâs, (13)

dâM

dt
= −iωMâM − igâ†

s âas. (14)

By replacing the above operators with their slowly varying
terms as âx = Âxexp(−iωxt) we have the following equations:

dÂs

dt
= −igÂ

†
MÂas, (15)

dÂas

dt
= −igÂMÂs, (16)

dÂM

dt
= −igÂ†

sÂas. (17)

Assuming that Âs carries the pump signal and is in the
nondepletion mode, and so can be treated classically, Eqs. (16)

and (17) are simplified as

d2Âas

dt2
= −g2NsÂas, (18)

d2ÂM

dt2
= −g2NsÂM, (19)

where Ns = 〈Â†
sÂs〉 is the total number of pump photons

inside the resonator. The above two differential equations for
this closed quantum system have sinusoidal solutions with a
frequency g

√
Ns . If we assume an initial value of ÂM0 and Âas0

for the quantum microwave and the optical states at t = 0, the
evolution of these states can be found as

ÂM = ÂM0cos(g
√

Nst) − ie−iφs Âas0 sin(g
√

Nst), (20)

Âas = Âas0cos(g
√

Nst) − ie+iφs ÂM0 sin(g
√

Nst), (21)

where φs is the phase of the pump photons. From Eqs. (20)
and (21) we see that complete quantum state conversion
from the microwave-to-optical domain happens after a time
T = π/(2g

√
Ns), where Âas(T ) ∝ ÂM0 and ÂM (T ) ∝ Âas0.

Therefore, once the microwave photon is converted to the
optical photon, it needs to leave the coupled resonator through
an optical waveguide before it is converted back to the
microwave domain. This is discussed in the next section.
From Eqs. (20) and (21) we see that the conversion frequency
g
√

Ns is dependent on the geometric parameters of the optical
and microwave resonators and the electro-optic coefficient,
all summarized in g factor, and the number of optical pump
photons inside the resonator (Ns).

B. An open-quantum-system analysis

Next, we consider an open quantum system where both
optical and microwave resonators are lossy and interact with
external optical and microwave waveguides, respectively, as
shown in Fig. 7. In this case, using the quantum Langevin
dynamic equations and the input-output formalism [8,12,17],
the system of equations becomes

dÂs

dt
= −γopt

2
Âs − igÂ

†
MÂas + √

γex,optŜin,opt, (22)

dÂas

dt
= −γopt

2
Âas−igÂMÂs+√

γex,optŜvac+√
γi,optŜ

′
vac,

(23)

dÂM

dt
= −γM

2
ÂM − igÂ†

sÂas + √
γex,M Ŝin,M+√

γi,MŜ ′′
vac,

(24)

Ŝout,as = Ŝvac − √
γex,optÂas, (25)

where γopt = γi,opt + γex,opt is the optical and γM = γi,M +
γex,M the microwave decay rate, and the subscripts i and ex

indicate the intrinsic and extrinsic loss rates, respectively. The
latter are due to coupling to the optical waveguide and the
microwave transmission line. These decay rates are related to
their corresponding optical and microwave quality factors as
Qx,opt = ωopt/(γx,opt) and Qx,M = ωM/(γx,M ).
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Ŝin,opt and Ŝin,M are the mode amplitudes of the optical
pump (coupled to the optical waveguide) and the microwave
signal (coupled to the microwave transmission line), which
excite the symmetric mode of the coupled resonator and the
microwave cavity, respectively. They are related to their mode
power as below:

Pin,opt = h̄ωopt〈Ŝ†
in,optŜin,opt〉, (26)

Pin,M = h̄ωM〈Ŝ†
in,M Ŝin,M〉. (27)

The antisymmetric mode of the coupled resonator in
Eq. (23) is coupled to two Langevin vacuum noise sources:
(1) the vacuum mode of the optical waveguide (Ŝvac) that
couples to the resonator. (2) The noise due to the intrinsic
loss of the resonator coupled to the background thermal bath
(Ŝ ′

vac). The microwave cavity mode in Eq. (24) is also coupled
to Langevin noise (Ŝ ′′

vac) due to the intrinsic cavity loss. The
Langevin noise term in Eq. (22) is negligible compared to the
excitation source Ŝin,opt, and so is not included. Equation (25)
describes the decay of the antisymmetric mode, which carries
the up-converted photon, to the optical waveguide.

Again assuming that the pump field Âs is not depleted and
so can be treated classically, the solutions to Eqs. (23) and (24)
can be obtained in the frequency domain as

Âas(
) = −ig
√

Nse
iφs

√
γex,M

(i
 + γopt/2)(i
 + γM/2) + g2Ns

Ŝin,M (
)

+ −ig
√

Nse
iφs

√
γi,M

(i
 + γopt/2)(i
 + γM/2) + g2Ns

Ŝ ′′
vac(
)

+ (i
 + γM/2)
√

γex,opt

(i
 + γopt/2)(i
 + γM/2) + g2Ns

Ŝvac(
)

+ (i
 + γM/2)
√

γi,opt

(i
 + γopt/2)(i
 + γM/2) + g2Ns

Ŝ ′
vac(
),

(28)

ÂM (
) = (i
 + γopt/2)
√

γex,M

(i
 + γopt/2)(i
 + γM/2) + g2Ns

Ŝin,M (
)

+ (i
 + γopt/2)
√

γi,M

(i
 + γopt/2)(i
 + γM/2) + g2Ns

Ŝ ′′
vac(
)

− ig
√

Nse
−iφs

√
γex,opt

(i
 + γopt/2)(i
 + γM/2) + g2Ns

Ŝvac(
)

− ig
√

Nse
−iφs

√
γi,opt

(i
 + γopt/2)(i
 + γM/2) + g2Ns

Ŝ ′
vac(
),

(29)

and if we are exactly on resonance (i.e., 
 = 0), then the above
two equations become

Âas = −ig
√

Nse
iφs

√
γex,M

γoptγM/4 + g2Ns

Ŝin,M + −ig
√

Nse
iφs

√
γi,M

γoptγM/4 + g2Ns

Ŝ ′′
vac

+ γM/2
√

γex,opt

γoptγM/4 + g2Ns

Ŝvac + γM/2
√

γi,opt

γoptγM/4 + g2Ns

Ŝ ′
vac,

(30)

ÂM = γopt/2
√

γex,M

γoptγM/4 + g2Ns

Ŝin,M + γopt/2
√

γi,M

γoptγM/4 + g2Ns

Ŝ ′′
vac

− ig
√

Nse
−iφs

√
γex,opt

γoptγM/4 + g2Ns

Ŝvac − ig
√

Nse
−iφs

√
γi,opt

γoptγM/4 + g2Ns

Ŝ ′
vac.

(31)

Finally, by putting Eq. (30) into Eq. (25), we obtain the
following expression for the up-converted photon mode in
the optical waveguide:

Ŝout,as = ig
√

Nse
iφs

√
γex,Mγex,opt

γoptγM/4 + g2Ns

Ŝin,M

+ ig
√

Nse
iφs

√
γex,opt

√
γi,M

γoptγM/4 + g2Ns

Ŝ ′′
vac

+ γM (γi,opt − γex,opt)/4 + g2Ns

γoptγM/4 + g2Ns

Ŝvac

− γM/2
√

γex,opt
√

γi,opt

γoptγM/4 + g2Ns

Ŝ ′
vac. (32)

From either Eq. (30) or (32), and ignoring the vacuum
terms, the maximum conversion of the microwave (Ŝin,M ) to
optical (Ŝout,as) photons occurs when 4g2Ns/(γoptγM ) equals
to 1. This expression is also knows as the cooperativity factor:

C = 4g2Ns/(γoptγM ). (33)

Putting Eq. (33) when C = 1 into Eq. (32), we find the optimal
up-conversion amplitude as

Ŝout,as = ieiφs

√
γex,Mγex,opt

γMγopt
Ŝin,M + γi,opt

γopt
Ŝvac

−
√

γex,optγi,opt

γopt
Ŝ ′

vac + ieiφs

√
γex,optγi,M

γMγopt
Ŝ ′′

vac. (34)

From Eq. (34) we find the net conversion factor from the
microwave to the optical photon as

ηM→opt = 〈Ŝ†
out,asŜout,as〉

〈Ŝ†
in,M Ŝin,M〉

= γex,optγex,M

γoptγM

= QoptQM

Qex,optQex,M

. (35)

From Eq. (35) we see that the conversion factor can
approach ∼1 when both the optical and the microwave
resonators are in strongly overcoupled regime (i.e., γex,opt �
γi,opt and γex,M � γi,M , such that γopt = γex,opt and γM =
γex,M ). Operation at such regime also dramatically reduces
the noise terms in Eq. (34). However, the optical pump power
increases when the optical resonator is strongly overcoupled,
as discussed later. On the other hand and at the critical coupling
regime for both the optical and the microwave resonators (i.e.,
γex,opt = γi,opt and γex,M = γi,M ), the conversion factor from
Eq. (35) is 0.25, meaning that out of every four microwave
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photons, only one of them is converted to the optical domain.
In addition, in this regime, the effect of noise terms in Eq. (34)
is considerable. Therefore, an optimal choice of the coupling
regime needs to be found. The choice of the coupling regime
will also influence the required optical pump power.

To understand the influence of optical pump power on the
conversion process we need to solve Eq. (22). In this equation,
the term Â

†
MÂas is negligible, and so a simple solution for Âs

can be found in the frequency domain as

Âs(
) =
√

γex,opt

(i
 + γopt/2)
Ŝin,opt(
). (36)

Using the above equation on resonance (
 = 0) and Eq. (26),
the total number of pump photons inside the resonator is related
to the pump power inside the waveguide as

Ns = 〈Â†
sÂs〉 = 4γex,opt

γ 2
opt

Pin,opt

h̄ωopt
= 4Q2

opt

Qex,opt

Pin,opt

h̄ω2
opt

. (37)

By putting Eq. (37) into the optimal cooperativity expression
(C = 1) in Eq. (33) we find the following expression for the
input pump power in the optical waveguide:

Pin,opt = h̄ωopt

γ 3
optγM

16γex,optg2
= h̄ωM

ω3
optQex,opt

16Q3
optQMg2

. (38)

In practical applications it is important to reduce the pump
power to minimize the noise and possibly detrimental effects
of scattered optical photons on the SC qubit (e.g., by breaking
Cooper pairs). As seen from the above expression, increasing
the optical Q and g has more impact than increasing the
microwave Q on reducing Pin,opt. Using Eqs. (37) and (38)
the scattered power can be expressed as

Pscat = γi,opth̄ωoptNs = 4Q2
opt

Qex,optQi,opt
Pin,opt

= h̄ωM

ω3
opt

4Qi,optQoptQMg2
. (39)

From Eq. (39) we see that at critical coupling Pscat = Pin,opt

as expected, and in the strongly overcoupled regime, Pscat =
4Qex,opt/Qi,optPin,opt. However, as shown later, operation in
the latter case dramatically increases the optical pump power.

Equations (33)–(35) and (37)–(39) are the key equations
that can be used to evaluate the performance of a coupled-
resonator device for efficient microwave-to-optical conversion
process. We use these equations in the following to evaluate
the device performance at different conditions.

Figure 8(a) shows the optical waveguide pump power at
different g values when operating at the optimal cooperativity
condition (C = 1). We assume both the optical and the
microwave resonators operate at the critical coupling regime
with quality factors within the range of the present technology
as specified in the figure. From this figure we see that a
pump power in tens of microwatt range is enough for the
efficient conversion process when g ≈ 2π × 10 kHz. Being
in the critical coupling regime, the scattered photon power is
equal to the optical pump power, and as shown in Fig. 8(a), it
can be quite small. Furthermore, we can optimize the location
of the SC qubit to minimize the impact of scattered optical

FIG. 8. Plots of (a) the optical pump power in the waveguide
[Eq. (38)] and (b) the pump photon number inside the resonator
[Eq. (33)] at different g rates. The solid plot corresponds to Qopt =
Qex,opt/2 = Qi,opt/2 = 106 and QM = Qex,M/2 = Qi,M/2 = 5000.
The dashed plot corresponds to Qopt = Qex,opt/2 = Qi,opt/2 = 105

and the same QM as in (a). Both the results in (a) and (b) are for the
optimal cooperativity (C = 1).

photons. Figure 8(b) shows the number of pump photons inside
the resonator. However, operation in the critical coupling for
both the optical and the microwave resonators can increase
the effect of noise terms as seen in Eq. (34). The maximum
suppression of the noise terms in Eq. (34) requires both the
optical and the microwave resonators to be in the strongly
overcoupled regime.

An interesting study is to investigate the optimal optical
pump power, scattered power, and the conversion factor for
different range of coupling of the optical resonator to the
external waveguide. This is shown in Fig. 9 by varying Qex,opt

and fixing the other parameters. The regimes of overcoupling
and undercoupling have been indicated, as well as the critical
coupling case of Qex,opt = Qi,opt (vertical dashed line). It
can be seen that operating in a strongly overcoupled regime
improves the conversion factor [Fig. 9(b)], although it comes
at the expense of larger pump power [Fig. 9(a)] and thus
larger scattered power. Therefore, a tradeoff exists between
increasing the conversion factor and reducing the pump power.
As a design rule, we can operate in the overcoupled regime as
long as the increased scattered power does not degrade the SC
qubit by heating effects.

V. DISCUSSION

The results shown in Figs. 8 and 9 assume moderate values
for the g factor as well as the Q of the optical resonator
which is achievable with the present technology [15,18]. With
further technology advances, achieving optical Q > 106 is
quite feasible for LN resonators. This improvement in optical
Q together with increase in g can dramatically reduce the pump
power to submicrowatt scale. Having a low optical pump power
allows designing a simpler filter for rejecting the pump photons

043808-7



SOLTANI, ZHANG, RYAN, RIBEILL, WANG, AND LONCAR PHYSICAL REVIEW A 96, 043808 (2017)

FIG. 9. Plots of (a) the optical pump power in the waveguide
[Eq. (38)] and the scattered (lost) power from the coupled resonator
[Eq. (39)], and (b) the microwave-to-optical conversion factor
[Eq. (35)] for different coupling Q rates between the optical resonator
and the waveguide characterized by Qex,opt. These plots and their
corresponding equations are for the optimal cooperativity (C = 1).
The other device parameters are shown in the insets of the figures.

and bandpass filtering the up-converted sideband which has
one or few photons.

An important consideration is the effect of optical photons
scattered from the optical resonator and reaching the SC
microwave resonator. These photons can generate quasipar-
ticles that can reduce the microwave Q [19]. Assuming the
exceedingly pessimistic scenario that all scattered optical
pump photons are directed toward the microwave resonator
and get absorbed there, we calculated the microwave Q using
a one-dimensional Rothwarf-Taylor model for quasiparticle
density [20,21].

The results are summarized in Fig. 10, in the case of two
SC materials—aluminum and niobium—at a temperature of
100 mK. As seen from this figure, even with scattered photons
in the range of tens of microwatts, the Q of the SC microwave
resonator is above 104. In reality, only fraction of scattered
photons will reach the SC and be absorbed (some will reflect),
ensuring that the quasiparticle limited microwave Q stays well
above 104 for aluminum SC and well above 105 for niobium
SC.

VI. CONCLUSION

We have presented an electro-optic–based nanophotonic
coupled resonator with doublet resonances for efficient
microwave-to-optical conversion of a SC microwave qubit.

FIG. 10. Variation of the microwave cavity Q due to quasipar-
ticles generated by optical photons scattered out from the optical
resonator and reaching the microwave cavity. This simulation
considers a worst case scenario where all the scattered optical photons
are absorbed by the microwave cavity.

The frequency doublet spacing of the photonic coupled
resonator is matched to the microwave resonance of the qubit.
The compactness of this design is shown to significantly
increase the g factor. The doublet spacing can be dynamically
tuned, allowing a perfect matching between the microwave
resonance and the doublet spacing. We derived the relation
between the optical powers and the parameters of the optical
and the microwave resonator, as well as the g factor for the
optimal conversion process.

Our theoretical investigations show that with such a
coupled-resonator device implemented with LN nanophotonic
resonators, g/2π in the range of ∼5–15 kHz and beyond is
achievable. While in our analysis a Z-cut LN was considered,
the X-cut LN can be used as well, though the electrode
placements need to be modified. We show that with such
g values, and with moderate optical and the microwave
Q values, an optical pump power in the range of tens
of microwatts is required for efficient microwave-to-optical
conversion. Integrating this nanophotonic device with a SC
qubit on the same platform is quite feasible and promises a
scalable coherent state transfer from SC quantum processors
over an optical fiber, thus paving the way for networked
quantum computing and communication.
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17, 9241 (2009).

[12] V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki,
J. Opt. Soc. Am. B 20, 333 (2003).

[13] M. Soltani, V. Ilchenko, A. Matsko, A. Savchenkov, J.
Schlafer, C. Ryan, and L. Maleki, Opt. Lett. 41, 4375
(2016).

[14] C. Javerzac-Galy, K. Plekhanov, N. R. Bernier, L. D. Toth,
A. K. Feofanov, and T. J. Kippenberg, Phys. Rev. A 94, 053815
(2016).

[15] C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar,
arXiv:1701.06470.

[16] A. D. OConnell, M. Ansmann, R. C. Bialczak, M. Hofheinz,
N. Katz, E. Lucero, C. McKenney, M. Neeley, H. Wang, E. M.
Weig, A. N. Cleland, and J. M. Martinis, Appl. Phys. Lett. 92,
112903 (2008).

[17] D. F. Walls and G. J. Milburn, Quantum Optics (Springer Science
& Business Media, New York, 2007).

[18] J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann,
R. Camacho, and M. Eichenfield, in CLEO: Science and
Innovations (Optical Society of America, Washington, DC,
2016), p. STh3P–1.

[19] S. Kaplan, C. Chi, D. Langenberg, J.-J. Chang, S. Jafarey, and
D. Scalapino, Phys. Rev. B 14, 4854 (1976).

[20] A. Rothwarf and B. N. Taylor, Phys. Rev. Lett. 19, 27
(1967).

[21] R. Barends, J. Wenner, M. Lenander, Y. Chen, R. C.
Bialczak, J. Kelly, E. Lucero, P. OMalley, M.
Mariantoni, D. Sank et al., Appl. Phys. Lett. 99, 113507
(2011).

043808-9

https://doi.org/10.1103/PhysRevLett.108.153603
https://doi.org/10.1103/PhysRevLett.108.153603
https://doi.org/10.1103/PhysRevLett.108.153603
https://doi.org/10.1103/PhysRevLett.108.153603
https://doi.org/10.1038/nphys2911
https://doi.org/10.1038/nphys2911
https://doi.org/10.1038/nphys2911
https://doi.org/10.1038/nphys2911
https://doi.org/10.1038/nphoton.2016.107
https://doi.org/10.1038/nphoton.2016.107
https://doi.org/10.1038/nphoton.2016.107
https://doi.org/10.1038/nphoton.2016.107
https://doi.org/10.1103/PhysRevLett.113.156401
https://doi.org/10.1103/PhysRevLett.113.156401
https://doi.org/10.1103/PhysRevLett.113.156401
https://doi.org/10.1103/PhysRevLett.113.156401
https://doi.org/10.1063/1.4955408
https://doi.org/10.1063/1.4955408
https://doi.org/10.1063/1.4955408
https://doi.org/10.1063/1.4955408
https://doi.org/10.1103/PhysRevA.94.013812
https://doi.org/10.1103/PhysRevA.94.013812
https://doi.org/10.1103/PhysRevA.94.013812
https://doi.org/10.1103/PhysRevA.94.013812
https://doi.org/10.1103/PhysRevA.81.063837
https://doi.org/10.1103/PhysRevA.81.063837
https://doi.org/10.1103/PhysRevA.81.063837
https://doi.org/10.1103/PhysRevA.81.063837
https://doi.org/10.1103/PhysRevA.84.043845
https://doi.org/10.1103/PhysRevA.84.043845
https://doi.org/10.1103/PhysRevA.84.043845
https://doi.org/10.1103/PhysRevA.84.043845
https://doi.org/10.1109/TMTT.2010.2074890
https://doi.org/10.1109/TMTT.2010.2074890
https://doi.org/10.1109/TMTT.2010.2074890
https://doi.org/10.1109/TMTT.2010.2074890
https://doi.org/10.1364/OPTICA.3.000597
https://doi.org/10.1364/OPTICA.3.000597
https://doi.org/10.1364/OPTICA.3.000597
https://doi.org/10.1364/OPTICA.3.000597
https://doi.org/10.1364/OE.17.009241
https://doi.org/10.1364/OE.17.009241
https://doi.org/10.1364/OE.17.009241
https://doi.org/10.1364/OE.17.009241
https://doi.org/10.1364/JOSAB.20.000333
https://doi.org/10.1364/JOSAB.20.000333
https://doi.org/10.1364/JOSAB.20.000333
https://doi.org/10.1364/JOSAB.20.000333
https://doi.org/10.1364/OL.41.004375
https://doi.org/10.1364/OL.41.004375
https://doi.org/10.1364/OL.41.004375
https://doi.org/10.1364/OL.41.004375
https://doi.org/10.1103/PhysRevA.94.053815
https://doi.org/10.1103/PhysRevA.94.053815
https://doi.org/10.1103/PhysRevA.94.053815
https://doi.org/10.1103/PhysRevA.94.053815
http://arxiv.org/abs/arXiv:1701.06470
https://doi.org/10.1063/1.2898887
https://doi.org/10.1063/1.2898887
https://doi.org/10.1063/1.2898887
https://doi.org/10.1063/1.2898887
https://doi.org/10.1103/PhysRevB.14.4854
https://doi.org/10.1103/PhysRevB.14.4854
https://doi.org/10.1103/PhysRevB.14.4854
https://doi.org/10.1103/PhysRevB.14.4854
https://doi.org/10.1103/PhysRevLett.19.27
https://doi.org/10.1103/PhysRevLett.19.27
https://doi.org/10.1103/PhysRevLett.19.27
https://doi.org/10.1103/PhysRevLett.19.27
https://doi.org/10.1063/1.3638063
https://doi.org/10.1063/1.3638063
https://doi.org/10.1063/1.3638063
https://doi.org/10.1063/1.3638063



